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ABSTRACT

Impact injury data are not, in general, suit-
able for statistical analysis by least squares,
because the data are not cbservations from
normal probability distributions. The princi-
Ple of maximm likelihood can be used as an
alternative, but requires that the appropriate
probability distribution be specified. Two
appropriate distributions are developed, one
for thoracic fractures and another for the
Abbreviated Injury Scale. A data sample for
each of thesequpeaofdataisamlyzedby
the principle of maximm likelihood in conjuc-

tion with the appropriate probability distribu-
tion.

THE METHCD OF LEAST SQUARES is often used to
analyze injury data. This method is suitable
for analyzing data which are cbservations fram
a family of normal, bell-shaped (Gaussian)
probability distributions such as those of
Figure 1. The randam variable ranges from
negative infinity to positive infinity, amd
each point on the regression line is an esti-
mate of the mean of a normal distribution.
Least squares provides an estimate of the re-
gression line and the standard deviation.

Impact injury to cadavers is usually as-
sessed in temrms of the Abbreviated Injury Scale
(AIS) (1) , or, for impacts to the thorax, in
terms of the mmber of thoracic fractures.
Neither the odbserved AIS nor the cbserved num—
ber of thoracic fractures is an cbservation
fran a normal distribution. First, both AIS
scores and thoracic fractures are equal to or
greater than =zero, never negative. Secard,
they are not in general observations fram a
bell-shaped distribution, 1like those in Figure
l. Consider first thoracic fractures.

For a wvery mild impact. shown in Figure 2,
all the probability of unity is at zero frac-
tures. For such a mild impact, it is almost a

certainty that a fracture will not occur. For
a more severe impact shown in Figure 3, the
probability of zero fractures might drop to 0.7

with the remaining 0.3 probability distributed
as shown. This

a greater mmber of fractures. For a very
severe impact, as in Figure 4, there is essen-
tially no probability of zero fractures, and
the distribution is considerably removed from
zero and is assumed to be appraximately nor-
mal. The general features in Figures 2 and 3
are realistic. This paper assumes for severe
impacts that the distribution is appraximately
normal . More will be said later about the
assumed probability distribution for thoracic
fractures.

Consider next AIS probability distribu-
tions. The probability distribution for thorac-
ic fractures is a phencmencn of nature. Howev-
er, the probability distribution for the AIS
depends not on nature, but on what is written
in the AIS handbock (1). For fractures, the
distribution can be expected to vary smoothly
as shown in Figure 4. No such variation can be
expected faor AIS data which have only seven
possible outcames fran zero to six inclu-
sive. The probabilities could make large posi-
tive or negative changes fram one AIS category
to the next. Figure 5 is a fictitious AIS
probability distribution which illustrates
large positive and negative changes. Al though
cne might assume that a large mmber of frac-
tures is an dbservation from an approximately
normal distribution as in Figure 4, it is diffi-
cult to assume, because of the limited mmber
of outcomes, that a set of AIS data are all

cbservations from approximately normal distribu-
tions.

* Nurbers in parentheses designate references
at the end of the paper.
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Figure 1: A family of normal distribution
curves which have as their mean the linear
equation shown and for which cbservations from
them are suitable for analysis by the method of
least squares.
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Figure 2: Probability distribution of thoracic
fractures for an extremely mild impact with all
the probability at zero fractures (i.e., mo
injury).
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Figure 3: A fictitious probability distribu-
tion one might expect of thoracic fractures for
a not too severe impact. (The distribution is
ot bell-shaped.)
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Figure 4: An assumed probability distribution
of thoracic fractures for a severe impact.

(The distribution is approximately bell-shaped.)
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Figure 5: A fictitious probability distribu-

tion of AIS to illustrate how the probability
might vary positively and negatively from cne
AIS category to the next. (Note that the proba-
bility for an AIS 2 is shown as zero.)
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Figure 6: Plots of the mean y of Equation 3
for various wvalues of a as a function of the

parameter g .
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The method of least squares minimizes the
sun of the deviations squared about an assumed
mean, and it can be implemented for any set of
data, However, the accuracy of least squares
fran a family of non-normal distributions would
be in doubt.

An alternative to least squares is based
on the statistical principle of maximum likeli-
hood (PML). As discussed in (2), chapter 8,
the PML is perhaps the best statistical proce-

l’llfe frr astimatire rarasmabtare 4o seedealed 1 d b=,
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distributions. For a family of normal distribu-
tions as in Figure 1, the PML and least squares
arrive at identical results. Least squares is
a special case of the PML.

Biamechanics papers began appearing about
1984 concerning the PML. Examples are in (3),
(4) and (5). Most of the papers concerned
probit, Weibull and logistic analyses, in which
the PML was used to estimate parameters. The
analyses in general concerned probability dis-
tributions for which there were anly two out-
cames. For eample, the distributions would
often give the probability of injury or mo
injury. An eanmple can be found in (3). In
contrast, this present paper develops probabili-
ty distributions for which there is a range of
injury severity outcames, i.e., the number of
thoracic fractures or the AIS scores.

As stated, the above cited three methods
are for the analysis of cbservations for which
there are only two outcames, and for this rea-
son they have generally been intended for fail-
ure analysis or threshold studies. The prcba-
bility distributions in this present paper
provide a higher level of detail in regard to
themprchability of injury than do the above
me .

REVIEW OF THE PRINCIFLE OF MAXIMM LIKELIHOOD

This is a brief ocutline of the PML. More
details can be found in (2) and other standard
statistics textbooks.

Each item in a data sample is a randam
variable, and thus the sample itself is a ran-
dam variable. Sampling theory assumes that one
is lucky and has cbserved a sample which has a
high probability of being ocbserved. The PML
assumes the ultimate, that the cbserved sample
has the highest probability of all samples. It
uses this assumption to estimate parameters in
a probability distribution similar to estimat-
ing the parameters of a normal distribution by
least squares. However, instead of minimizing
a function, as in least squares, a function is
maximized., The function is now described.

If the probability of cbserving any ocut-
care in a sample is independent of all the
other cbserved outcames, then the cbservations
are said to be independent in the probability
sense. The probability distribution for such a
sample is the product of the probabilities of
each item in the sample. For example, let

P(ksp)
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be the probability of cbserving the cutcame k,
where p represents the set of parameters to be
estimated by the PML. For a sample of size N,
we have the following set of cbservationms,

Kykge ool

and

p%”ji?ﬂ‘z’”’nu.-.?%}ﬂ)
are their corresparding probabilities. The
probability distribution of the sample, usually
called L in the thecry of the PML, is the prod-
uct of these probabilities:

L-Plkl;nll’(k?lﬂl ...Ptknn) Bg. (1)

In summary, the function L is the prcbabil-
ity distribution for a set of cbservations
which are independent in the probability
sense, The PML requires selecting that set of
values of the parameters represented bye which
maximizes L. Maximizing L, called the
likelihood function, is the essence of the PML.

For this report, a mumerical procedure to
maximize L was incorporated into the camputer
program used for the analyses presented. (The
program and its documentation can be cbtained
from the author.)

In order to implement the PML, it is neces-
sary to assure the true distribution of the
data. To the extent that an assumed distribu-
tion is in error, an error is introduced into
the analysis. Faith in the results rests upon
the logic used to establish a probability dis-
tribution and the reascnableness” of the re-
sults. The distribution for fractures will be
presented first and that for the AIS later.

THE DEVELOPMENT OF A PROBABILITY DISTRIBUTION
FOR THORACIC FRACTURES

There are no known data by which to deter-
mine the features of the probability distribu-
tion of thoracic fractures. Nor does it appear
feasible how such data could be generated be-
cause of the wide wvariability of cadavers.
Therefore, in the absernce of such data, appro-
priate features will be assumed based on common
sense, and then a probability distribution with
those features will be presented.

The following features are considered
appropriate for a probability distribution for
thoracic fractures:

i (1) The possible outcames are integers
ranging fram zero to positive infinity.

(2) The distribution is not erratic.
That is, as one starts at zero and goes to a
higher mmber of fractures, there is a smooth
change in the prcbabilities.

(3) For an impact of sufficient severity
such that the probability of no imjury is
small, the distribution's envelope approximates
the curve of a ncrmal probability distribution
similar to what is shown in Figure 4. This



assumption is based on the fact that many cb-
servables in nature have normal distributions.

(4) The probability of no thoracic frac-
tures approaches unity (i.e., the probability
of no thoracic fractures approaches certainty)
as the impact severity approaches zero.

(5) Once the probabilities decline as one
Toves to higher numbers of fractures, the proba-
bilities contime to decline. (In practical
temms, this means that the probability distribu-
tion carmot have a local minimum, samething
which is difficult to imagine.)

A probability distribution that possesses
the above features is

Pk =g ORI o (k#1178 Bq.(2)

where P(k) is the probability of cbserving
eactly k fractures, and it was shown by evalu-
ating Eq.(2) for various pairs of values of the
parameters e and B that the distribution
has the features described above.

The development of a probability distribu-
tion for fractures also requires establishing
how best to model the distribution's two parame-
ters e and g as functions of the experimen-
tal data. The first problem was to establish
how a and p change with impact severity.
It was easy to analyze Eg.(2) to show
that B equal to zero is the condition for
P(0)=1 (no impact). Thus, p as a function
an impact severity parameter (e.g., maximum
tensile force in a belt) passes through the
origin, The behavior of B away fram the
origin was established by studying the mean of
the probability distribution of Eq. (2).
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Figure 7: A least squares fit for a large
mmber of thoracic fractures versus tensile
force in a shoulder belt for cadavers re-
strained by a lap and shoulder belt in forward
facing impacts. (The number of fractures is
restricted to fourteen or more.)

The mean of the probability distribution
of Eq.(2) is

a a
“.2 k [e_fkfﬂ) - e'{ﬂ(*‘l,/a) ] Eq. (3)

The curves in Figure 6 show that u is appraxi-
mately directly proportional B with the
an of

to
Drocortionality oonstant a2 Suncti g

i
Knowledge of the mean of thoracic fractures as
a function of inpact severity would provide
direct knowledge on how best to model [
because the two parameters are directly propor-
tional to each other.

Table 1 (6) has data for 106 cadavers
restrained by a lap and shoulder belt in for-
ward facing impacts. The murber of thoracic
fractwwes is given along with the meximum ten-
sile farce (MIF) in the shoulder belt, the age
and the weight of the cadaver. Although, in
general, thoracic fractures are not cbserva-
tions from a normal distribution, this present
Paper assumes that a large mmber of fractures
is an cbservation fraom an approximately normal
distribution as shown in Figure 4. Thus, an
analysis by least squares to estimate the mean
of a sample for a large mmber of fractures is
assured valid for this special case. Figure 7
shows a plot fram Table 1 of fractures versus
MIF together with a least squares fit to a
straight line for fourteen or more fractures as
a furction of the MIF.

Figure 7 shows that the mean muber of
fractures in the range of severe impacts is not
deperdent oan the MIF., A plateau, or better
stated, a saturation is attained. It appears
that there is a maximm murber of fractures
;hat can occur on average. (The effect that
increased impact severity might have on crgans
within the thorax is not considered in this
analysis of fractures.) No significance is
attached to the 1line's slightly negative
slope. The true line, for which the line shown
is an estimate, is assumed to be horizental.
Since g is proporticnal to the mean , ard
the mean becames horizantal for severe impacts,
so should B .

For a region of very mild impacts there is
little probability of injury, and the mean,
together with g , would essentially be horizom-
tal, very close to zero. Thus, p should be
horizontal in a region of very mild impacts and
became horizental again in the region of severe
impacts. Between these two horizontal regions
the mean, together with 8 , gradually increas-
es with impact severity. This paper assumes
that g has the "S" curve shown in Figure 8 of
the form

-fﬂﬂ,

where £f(X)>0 and X is a parameter which speci-
fies impact severity.

The modeling of e was accomplished, as
for p , to assure that the mean u increases
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TAELE 1 —

THORACIC FRACTURE DATA (6)

WT AGE FORCE FRACTURES WT AGE FORCE FRACTURES
LB) (¥R) (LB) (LB)  (¥YR) (LB)
43 33 1621 6 163 22 1293 0
114 12 991 2 174 32 1553 5
97 170 881 24 116 34 982 1
103 73 926 13 178 48 1168 5
79 57 1101 10 114 S0 935 12
150 5% 1385 23 148 55 528 10
g7 -8 1214 28 141 56 989 10
190 39 1767 5 156 .27 1003 3
9 M 1101 18 136 7% 843 26
183 32 1677 9 178 45 1054 8
200 75 1632 19 129 S8 922 14
154 62 1677 22 117 62 1753 13
192 53 1632 20 156 52 2203 13
145 40 1677 19 154 60 989 9
183 39 1742 8 187 50 1573 6
154 34 1544 14 132 W 1473 11
190 45 1720 10 121 60 1101 18
120 37 1434 12 154 33 1596 10
117 52 1333 18 154 53 1506 22
192 65 1499 17 154 57 775 7
179 45 1587 19 163 57 1978 19
152 65 1324 25 132 43 1910 13
154 36 1280 16 106 55 1506 27
132 35 1499 5 136 57 1461 19
123 22 1544 4 139 48 1416 11
172 49 1807 15 154 53 1303 10
172 33 1564 9 110 51 472 0
143 67 1544 22 150 57 1169 13
167 42 1697 12 132 59 854 11
123 19 1412 2 189 60 944 2
176 61 1499 9 110 60 831 2
126 S5 1454 13 145 53 1258 13
134 75 1454 21 139 64 1236 14
152 30 1632 4 139 46 966 2
110 44 1499 7 132 34 899 0
132 79 1366 28 182 53 560 0
132 16 1477 1 122 58 710 1
187 59 1697 23 153 41 1140 0
139 22 1544 10 148 57 1020 7
154 25 1544 7 154 32 1560 0
165 58 1389 14 226 56 1790 14
134 38 1059 9 158 50 1930 4
108 54 1059 12 192 61 1930 15
205 24 1598 .| 216 58 1650 11
125 24 1256 6 137 61 1595 11
152 35 1256 6 179 64 1495 12
126 55 1258 14 122 52 1325 E
106 21 1258 3 135 46 1781 16
198 26 1648 13 156 74 1250 12
163 22 1551 3 115 69 1330 23
132 38 888 2 162 44 2200 18
123 38 1223 7 125 65 2050 32
114 38 818 13 174 51 1200 8
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as the impact severity increases. The parame-
ter B by Eq.(4) was substituted into Eq.(3),
and then u was differentiated with respect to
X. The derivative indicated that o modeled
indeperdent of X would assure that the mean
would increase with impact severity. (In re-
spect to Table 1, a could be modeled as a
function of age and/or weight but not MIF, the
impact severity parameter.)

The basic requirements for the modeling
of @ and P have been described. Modeling on
a trial and error basis was still required.
The model with the largest value of L (the
figure of merit) was chosen as the best,

THE PROBABILITY OF THORACIC FRACTURES OF BELT
RESTRAINED CADAVERS

The data in Table 1 (6) were analyzed by
the PML to estimate the probability of thoracic
fractures for belt restrained cadavers in for-
ward facing impacts. Of the models investigat-
ed by trial and error, the best was for

as= 1+91A

_p3ﬂ‘ﬂ?)

B=p,(AM) (1 - e )P4

where A is age, W is weight, and MIF is the
maximum tensile force in the shoulder belt.
The p's were determined by the PML to be

P, =.023793 P, =0.00386297
p, =48.1592 b, =19.2897

B e

R A L

X

Figure 8: The "S" shaped curve assumed for g
in Equation 2, as a function of X, a parameter
which specifies impact severity.

Figure 9 is a bar graph of the probability
(based on the above equations for e and g and
the PML values) of thoracic fractures for a
cadaver of weight 160 pounds, age 35 years and
a MIF of 1200 pouds. Figure 10 contains the
envelcpe of probability distributions for a
cadaver of weight 160 pounds and MIF 1200
pourds to show the distributions as a function
of age. Figure 11 shows the mean of three of
the distributions in Figure 10 as a function of

the MIF. In accordance with the modeling used,

the means attain a plateau. (Note that al-
though the probability distribution of Eq.(2)
has two parameters, four parameters were used.)

THE PROBABILITY DISTRIBUTICN FOR THE AIS

As discussed, the probability distribution
far AIS is determined by what is written in the
AIS handbock (1). The distribution chosen has
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Figure 9: The probability distribution of

thoracic fractures for a cadaver restrained by
a lap ard shoulder belt for the following condi-
tions: weight 160 1lb, age 35 years and the
maximum tensile force in the belt 1200 lb.
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Figure 10: Probability distributions of thorac-
ic fractures as a function of age for a cadaver
restrained by a 1lap and shoulder belt for the
following conditions: weight 160 1b and maximum
tensile force in the shoulder belt 1200 1b.
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to permit large positive and negative changes
in the probabilities fram one AIS category to
the next. Consider the following distribution
where each 6> 0 :

-8
P(O) sl1-e ¥

_. -8 -0

P(l) =e *-e 2 P@4) =e 9-e 3

-92 -!3 -

P(2) = e -e
-0, =0

P(3) =e - ¢

P{5) =& “~ie Egs (5)

P(6) = e

A probability distribution must total cne over
all possible outcames, and this distribution
does so. Furthermore, all probabilities have
to be positive nunbers between zero and cne.
Reference is made to Figure 12 which is a graph
of the function

which varies fram zero to one. Thus, the dif-
ferences in Egs.(5) are between zero and cne
provided that 041 2e k* The probabilities can

have large positive and negative changes fram
one AIS category to the next depending on where
each @ is located. The PML determined the
location of each.

A drawback of this AIS distribution is
that it contains six parameters, the @'s,
whereas the distribution for fractures contains
only o ard f . The minimum nurber of PML
parameters that have to be determined eguals
the nurber of parameters in the distribution.
More can be added as ir the amalysis of frac-
tures. For every parameter, there is one less
degree of freedam in the statistical analysis.

55 YEARS

35 YEARS

15 YEARS

NUMBER OF THORACIC FRACTURES
(-]
T

0 50 100 150 200 250 300 350

MAXIMUM TENSILE FORCE (LB)
IN SHOULDER BELT x 10

Figure 11: The mean of thoracic fractures of a
160 1b occupant as a function of the maximum
tensile force in the shoulder belt for ages 15,
35, and 55 years.

The e's of Egs.(5) were modeled by a
simple scheme based on a factor F>0 which was a
function of cadaver age, weight and normalized
carpression (NC) of the thorax. The scheme was
as follows:

.1 = \'1F .‘ -.3 + "F

.2-.11"'2}' l5:04+y5f' Egs. (6)
0, = -

3 s \'3!’ l6 95 - 'GF

Each v was positive and estimated by the BML.
The scheme assured that each successive § would
be larger than the preceding one, a requirement
80 that all the probabilities would be
positive,

It was through the factor F that all model-
ing of the experimental data was accamplished.
Although F could be any arbitrary function
which was always positive, for this paper the
normalized carpression (NC) was always a factor
in the denominator of F. As the severity of
the impact becames less and less severe and NC
approaches zero, F and @3 approach infinity.
As can be seen by Figure 12, this causes P(0)
to approach unity, as would be expected,

The mean of the distribution given by
Egs. (5) is

6
B = ¥ kP(k)
© k=0

- -8 -e

‘e 1+e LR RN +e 6

and it can be easily shown that by NC's being a
factor in the denominator of F assures that the
mean increases as NC, the impact severity,
increases. This is equivalent to the condi-

tion imposed on the mean of thoracic fractures.

0 L -
9, 0287 0, 65 og

-9
Figure 12: Graph of the function e in order
to show how the location and the separation of
the e's affect the AIS probabilities.
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TABLE 2 —

AIS INJURY DATA FOR BLUNT, FRONTAL IMPACTS

TO THE THORAX (7)

WEIGHT AGE NORMALIZED AIS
(LB) (YRS) _COMPRESSION
167 81 0.444 5
117 80 0.393 4
145 78 0.418 4
156 15 0.375 2
125 29 0.350 1
164 72 0.417 '
179 65 0.425 4
119 65 0.395 4
139 75 0.185 0
149 54 0.194 0
164 51 0.459 6
130 64 0.447 4
164 52 0.346 4
119 61 0.321 1
141 64 0.315 3
208 46 0.310 1
169 75 0.257 2
175 66 0.269 3
110 76 0.363 4
138 72 0.371 2
138 67 0.420 4
126 76 0.435 6
134 58 0.428 4
89 52 0.310 2

THE PROBABILITY FOR AIS FOR ELUNT, FRONTAL
IMPACTS TO THE THORAX

The data in Table 2 were analyzed to esti-
mate the probability of injury assessed in
terms of the AIS for blunt, frontal impacts to
the thorax. Consult (7) for the experimental
details.

The following model of F had the best
figure of merit, i.e., the greatest likelihood
function, of those evaluated;

Y
F=Ww'/ [A (N2

where A 1is age, W is weight and NC is the nor-

malized thoracic campression. The value of
the single PML parameter in the F factor (desig-
nated vy ) and of the other six in the distri-
bution of the previous section were determined

to be
v.=9.10095 v,=17.4476 v,=33.1090
1 2 3
¥4=23.9034 ¥ 5=285.478 \‘6=BS.3498

!7=~0.663331

Figure 13 shows, based on the above model
of F, the probability distribution for a cadav-
er of age 65 years and of weight 160 pounds and
pormalized thoracic coampression of 0.45. Note
that the prcbabilities do not vary smoothly.
Figure 14 shows two emvelopes of the probabili-
ties for weight of 160 pounds and normalized
carpression of 0.45; one envelope was for a
cadaver of age 20 years and the other was for a
cadaver of age 65 years. As to be expected,
there is a shift to higher probabilities for
the older cadaver.

Fran the distribution in Figure 13, cne
can carpute the probability of an AIS less than

‘or equal mwoﬂnrus{:ategorybya'sm-
‘tion of probabilities. However, a statistical
procedure requiring fewer PML determined parame-
ters and thus consuming fewer degrees of free-
dam is explained in the next section.

THE PROBABILITY DISTRIBUTION OF AIS<3 AND AIS>4

The AIS data in Table 2 were arbitrarily
separated into two categories: AIS<3 ard
AIS>4. (Other pairs of categories could h:ve
been selected.) By this scheme, the probabili-
ty distribution given by Egs. (5) reduces to

- 140 -



05

4
E 0
=
§ L
& g2k

0

0 1 2 3 4 5 6
ABBREVIATED INJURY SCALE

Figure 13: The AIS probability distribution

for blunt thoracic impact of a cadaver for the
following conditions: age 65 years, weight 160
b and a normalized thoracic campression of
0.45.

05 |- BOTHCADAVERS:
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Figure 14: The AIS prabability distributions
for two cadavers of weight 160 1b and a normal-

ized thoracic campression of 0.45; one cadaver
ofagezoyursamtheomerofageﬁsmrs.
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NORMALIZED THORACIC COMPRESSION
Figure 15: The probability of AIS>4 as a func-
tion of normalized thoracic compression for two
cadavers of weight 160 lb; one cadaver of age
20 years and the other of age 65 years.

P(O) =1-¢ @

-@ Egs. (7)
e

P(1)

where P(0) is the probability of AIS<3, and
P(1) is the probability of AIS>4. This distri-
butiminscnlyuuepumterinsteadofﬂt
six with AIS. The additional parameters that
one might introduce would be expected to be
iéwerﬁnnti'emi:ﬁ.nunofsbcmmﬁradfurm
AIS.

The modeling for the single parame-
ter (] was similar to that used for the six
AlS parameters with Egs. (6) reducing to the cne
equation

o= vlF

where vYq was one PML parameter, Additicnal
parameters were introduced through the factor
F. The following model of F

Y v v
F=wZ[a3 ',

had the highest figure of merit of those inves-
tigated an a trial and error basis. By the
three additional v's  introduced through F,
duncdelcmtajnedatotaloffmrmwm-
ters. The values of the four v's were

v,=12.2122 ¥,=2.73002

3

72*-2.59650 14818.1040

THE PROBABILITY CF AIS>4 FOR BLUNT, FRONTAL
IMPACTS TO THE THORAX

Since there are only two possible out-
cames, AIS<3 ar AIS>4, the probability of AIS>4
also correspands to the mean of the distribu-
tion of Egs.(7). Also, cne mirmus the probabili-

of AIS>4 is equal to the probability of
AIS<3.

~ Figure 15, based on the model of F in the
preceding section, has plots of the probability
of AIS>4 versus normalized thoracic campression
for two cadavers each of weight of 160 pourds.
One curve is for a cadaver of age 65 years and
another for age 20 years, Both curves have a
general "S" shape even though such a condition
was not imposed by the analysis., As to be
expected, the curve for a cadaver of 20 years
is located to the right of a cadaver of age 65
years,
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DISCUSSION

A test for which the outcame was no injury
contains important information, and the data
should be incorporated into the statistical
analysis. In least squares one would have to
be careful in including such data. Reference
is made to fictitious fracture data in Figure
16. The solid line represents the true mean to
be estimated by least squares. One would want
to exclude the data points for no injury, be-
cause their use would introduce an error as
indicated by the dashed line. Since the prcba-
bility distribution for fractures used to imple-
ment the PML has zero fractures as an cutcame,
such data would not have to be excluded. Fig-
ure 17 contains fictitious data to illustrate a
similar problem for AIS, except that the prcb-
lem exists as both ends of the AIS scale.
Since the probability distribution for AIS has

NUMBER OF FRACTURES

MAXIMUM THORACIC COMPRESSION

Figure 16: Fictitious fracture data to illus-
trate why a data sample containing tests for
which no fractures occurred is not suitable for
analysis by least squares.
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Figure 17: Fictitious AIS data which would
not be suitable for analysis by least squares
because of the data points (boxed in) at AIS=0
and AIS=6. -

both zero and six as outcames, data of both
zero and six would not have to be excluded.
(For purposes of illustration, the solid line
representing the true mean in Figure 16 was
drawn to intersect the horizontal axis at a
point to the right of the arigin. In reality,
the mean would pass through the origin.)

All modeling in this paper, whether for
thoracic fractures or the AIS, was such that as
the impact severity decreased (i.e., approached
zero) the prcbability of no injury approached
ane.

The two data samples analyzed in this
paper were selected just to illustrate a new

methodology. The adequacy of the data itself
was not reviewed.

CONCLUSIONS

(1) Impact injury data are not cbserva-
tions from normal (Gaussian) probability dis-
tributions and, thus, they are not, in general,
suitable for analysis by least squares. This
conclusion is especially true if the sample
contains data for which no injury occurred or
for which the AIS equals six.

(2) The principle of maximum 1likelihood,
as implemented in this report for both thoracic
fractures and the Abbreviated Injury Scale,
permits an entire data sample to be analyzed
including tests for which no injury occurred
or, in respect to the Abbreviated Injury Scale,
for which there is one or more AIS scores of
six.

(3) The probability of thoracic fractures
is a phenamenon of nature, while the proba-
bility of AIS depends upon what is written in
the AIS handbock. For this reason, two entire—
ly different prcbability distributions had to
be specified, one for fractures and another for
the AIS.

RECOMMENDATIONS

(1) Unless an investigator has a solid
reason for not doing so, all modeling relative
to the principle of maximum likelihood, whether
for thoracic fractures or the AIS, should be
done so that as the impact severity approaches
zero the probability for no injury approaches
one. (In other words, if there is no impact,
there is no injury.)

(2) In statistically analyzing a set of

'. imjury data, try to establish guidelines for

the modeling of the probability distribution's
parameters, as was done in this report. Clear-
ly Recamendation (1) is one guideline. Anoth-
er is requiring the mean of the distribution to
increase as the impact severity increases.
Search for other guidelines such as these.

(3) Investigate implementing the princi-
ple of maximum likelihood to analyze other sets
of impact injury data such as for the lower
limbs.
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PAPER: Development of two Probability Distributions
SPEAKER: Arnold K. Johnson
Question: Guy Nusholtz, Chrysler

You're validating your model against some experimental data using
cadavers. You make the assumption that if there is not impact there
will be no injuries; no rib fractures. You could probably find some
instances where you could set a cadaver up, put a seat-belt on him,
have no impact, do an autopsy and find injury.

A. OK, I'm assuming you don’t have biased cadavers. You've got a
good point there, it wasn’t covered in the distribution or in the
paper.

Nusholtz: Obviously, in a vehicle you would expect that but probably
you might want to consider that there might be some probability that
at no tension you might get some sort of fractures.

A. That’s a good point. I never thought of it. Thank you. I'll go
back and give some thought to it,
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